If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+5=41
We move all terms to the left:
3t^2+5-(41)=0
We add all the numbers together, and all the variables
3t^2-36=0
a = 3; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·3·(-36)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*3}=\frac{0-12\sqrt{3}}{6} =-\frac{12\sqrt{3}}{6} =-2\sqrt{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*3}=\frac{0+12\sqrt{3}}{6} =\frac{12\sqrt{3}}{6} =2\sqrt{3} $
| t+7/4=8 | | x19-()=0 | | 2x+5=11x+68 | | -8-5y=12+-9y | | (3x+33)=180 | | 4a+5=18 | | 180=93+29u | | 7.7w=9.1w+15.4 | | (4x+44)=180 | | n/8-3=8 | | n/12=35/24 | | 5x+2x–3=10x+12 | | xx60=20 | | -14u=17-13u | | ⅗y+½=3,5 | | 6-12j=-16j+2 | | u/12–8=-8 | | 7(-x+3)-3(5x-3)=-2x+12+7x | | X²+20x+64=0 | | x+16x=15 | | 140=17x+4 | | y+4/5=8 | | 0.9f=f+1.55 | | 6r-2=16+5r | | 160²=32m+160 | | -m+10=-6m | | 180=80x+58 | | 1.4x.5= | | -4.5-7.5d=4.86-15.3d | | 1.4=x.5 | | -5v/6=-25 | | -4/9v=-24 |